

Features

- Open-loop, fluxgate-based current transducer
- 80A Single phase (40A Three phase)
- Meet IEC 62752: 2018 (IC-CPD)
- Meet IEC 62955: 2018 (RDC-PD)
- Meet the requirements of AC 30mA and DC 6mA residual current detection
- PCB installation, easy to use
- 3,000 A surge current capability

Ideal Power's 36TLB6-A1PDM(K) EV Charger Residual Current Transducer Series are certified to RoHS & IEC 61010/IEC 62752 /IEC 62955 Standards and comply with the relevant Efficiency Regulations. These are primarily used in EV Automotive Industries and customised solutions are available upon request.

Models

Model Number	Input Voltage (V DC)	Rated DC Residual Current (mA)	Rated AC Residual Current (mA)	Rated current (A)	Static Power Dissipation (W)
TLB6-A1PDM	5	6	30	40/ 80(3 phase/ 1 phase)	0.25
TLB6-A1PDMK	5	6	30	40/ 80(3 phase/ 1 phase)	0.25

Note: TLB6-A1PDMK enhances magnetic shielding performance. If there are electromagnetic control devices, such as relays within 10cm of the residual current transducer, it is recommended to use 36TLB6-A1PDMK.

Electrical Characteristics

Item	Symbol	Min	Тур	Max	Unit.
Rated Residual DC Operating Current			6		mA
Rated Residual AC Operating Current	I∆NAC		30		mA
Range of Remaining DC Operating Current	I∆NDC-RANGE	3		6	mA
Range of Remaining AC Operating Current	I∆NAC-RANGE	15		30	mA
Maximum Residual Current Measurement Range	I∆RANGE		300		mA
Input Voltage	VCC	4.8	5	5.2	V
Static Operating Current			30	50	mA

36TLB6-A1PDM(K) EV Charger Residual Current Transducer

Protection and Detection Characteristics

Item	Symbol	Min	Тур	Max	Unit.
Calibration Test Input Low-Level Voltage	VTEST-IN IL	0		1	V
Calibration Test Input High-Level Voltage	VTEST-IN IH	4		5.15	V
Error Output Low-Level Voltage	VERROR-OUT OL	0		0.6	V
Error Output High-Level Voltage	VERROR-OUT OH			High	
Operating Output Low-Level Voltage	VX6-OUT/ X30-	0		0.6	V
Operating Output High-Level Voltage	VX6-OUT/ X30-			High	
PWM Output Duty Ratio	SPWM-OUT	3	3.3	3.6	%/mA
Frequency of PWM Output Duty Ratio	fPWM-OUT	7.8	8	8.2	kHz
Calibration Test Input Low Pulse Limit	TTEST-IN IL		40		ms
Calibration Test Input High Pulse Limit	TTEST-IN IL		1.20		s

Isolation Characteristics

Item	Operating Conditions	Min	Тур	Max	Unit.
Isolation Voltage	Primary edge input, secondary output; 50Hz, 1min; leakage current<0.1mA			4	kVAC
Pulse Withstand Voltage	1.2/50µs		5.5		kV
Insulation Resistance	500VDC	1			GΩ

General Characteristics

Item		Symbol	Min	Тур	Max	Unit.		
Operating Temperatu	ire	Та	-40		+85	°C		
Storage Temperature	;	Ts	-50		+125 °C			
Weight	36TLB6-A1PDM	m		20		g		
voight	36TLB6-A1PDMK	m		24		g		
Vibration		0-150Hz, 5g (GB2423.10, IEC60068-2-6)						
Overvoltage Categor	у		OVC III (IEC61010))			

Performance Characteristic

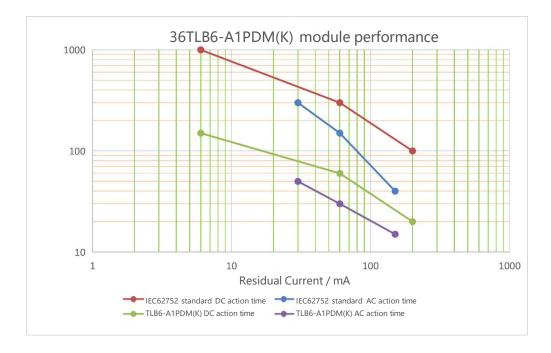
Item	Symbol	Residual Current Waveform	Min	Тур	Max	Unit.
	I∆NAC50	Frequency 50Hz AC	15	22.5	30	mA RMS
	I∆NA0	0 Angle Pulsating DC	11	15	30	mA RMS
Desident	I∆NA90	90 Angle Pulsating DC	10	15	30	mA RMS
Residual operating	I∆NA135	135 Angle Pulsating DC	10	15	35	mA RMS
current	I∆NS-DC	Smooth DC	3	4.5	6	mA RMS
	IAN2PDC	Two-Phase Rectification DC	3.5	5	7	mA RMS
	IAN3PDC	Three-Phase Rectification DC	3.1	4.5	6.2	mA RMS
	I∆NIC-CPD	IC-CPD	18	24	42	mA RMS
	T∆NAC50@30mA	RMS 30mA Frequency 50Hz AC		55	70	ms
Response	T∆NAC50@60mA	RMS 60mA Frequency 50Hz AC		30	40	ms
time	T∆NAC50@150mA	RMS 150mA Frequency 50Hz AC		10	25	ms
	T∆NA0@42mA	RMS 42mA 0 Angle Pulsating DC		38	50	ms
	T∆NA0@84mA	RMS 84mA 0 Angle Pulsating DC		30	40	ms

Ideal Power Limited

Performance Characteristic (continued)

	T∆NA0@210mA	RMS 210mA 0 Angle Pulsating DC	 10	25	ms
	T∆NA0@42mA+S- DC@6mA	RMS 42mA 0 Angle Pulsating DC with 6mA Smooth DC	 38	50	ms
	T∆NA0@84mA+S- DC@6mA	RMS 84mA 0 Angle Pulsating DC with 6mA Smooth DC	 30	40	ms
	T∆NA0@210mA+S- DC@6mA	RMS 210mA 0 Angle Pulsating DC with 6mA Smooth DC	 15	25	ms
	T∆NA90@42mA	RMS 42mA 90 Angle Pulsating DC	 40	50	ms
	T∆NA90@84mA	RMS 84mA 90 Angle Pulsating DC	 30	40	ms
	T∆NA90@210mA	RMS 210mA 90 Angle Pulsating DC	 25	35	ms
	T∆NA90@42mA+S- DC@6mA	RMS 42mA 90 Angle Pulsating DC with 6mA Smooth DC	 38	50	ms
	T∆NA90@84mA+S- DC@6mA	RMS 84mA 90 Angle Pulsating DC with 6mA Smooth DC	 30	40	ms
	T∆NA90@210mA+S- DC@6mA	RMS 210mA 90 Angle Pulsating DC with 6mA Smooth DC	 25	35	ms
	T∆NA135@42mA	RMS 42mA 135 Angle Pulsating DC	 38	50	ms
Response	T∆NA135@84mA	RMS 84mA 135 Angle Pulsating DC	 30	40	ms
ime	T∆NA135@210mA	RMS 210mA 135 Angle Pulsating DC	 25	35	ms
	T∆NA135@42mA+S- DC@6mA	RMS 42mA 135 Angle Pulsating DC with 6mA Smooth DC	 38	50	ms
	T∆NA135@84mA+S- DC@6mA	RMS 84mA 135 Angle Pulsating DC with 6mA Smooth DC	 30	40	ms
	T∆NA135@210mA+S -DC@6mA	RMS 210mA 135 Angle Pulsating DC with 6mA Smooth DC	 25	35	ms
	T∆NS-DC@6mA	6mA Smooth DC	 120	200	ms
	T∆NS-DC@60mA	60mA Smooth DC	 25	60	ms
	T∆NS-DC@300mA	300mA Smooth DC	 10	25	ms
	T∆N2PDC@6mA	RMS 6mA Two Phase Rectification DC	 120	200	ms
	T∆N2PDC@60mA	RMS 60mA Two Phase Rectification DC	 25	60	ms
	T∆N2PDC@300mA	RMS 300mA Two Phase Rectification DC	 10	25	ms
	T∆N3PDC@6mA	RMS 6mA Three Phase Rectification DC	 120	200	ms
	T∆N3PDC@60mA	RMS 60mA Three Phase Rectification DC	 25	60	ms
	T∆N3PDC@300mA	RMS 300mA Three Phase Rectification DC	 10	25	ms
	T∆NF@210mA	RMS 210mA Composite Current	 15	25	ms

EMC

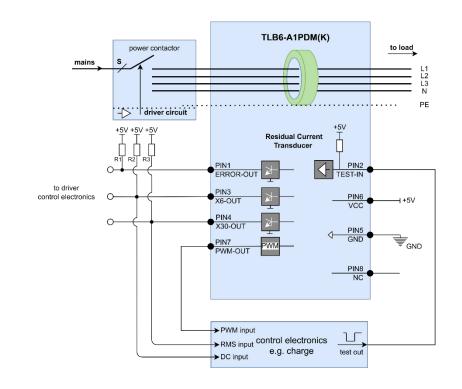

Item		Specifications	
EMI	CE	CISPR32/EN55032 CLASS B	
	RE	CISPR32/EN55032 CLASS B	
	ESD	IEC/EN61000-4-2 Contact ±6kV, Air ±8kV	perf. Criteria A
	RS	IEC/EN61000-4-3 30V/m	perf. Criteria A
EMS	EFT	IEC/EN61000-4-4 ±2kV	perf. Criteria A
	Surge Current	IEC62955 6000V/2Ω/3000A, 8/20us	perf. Criteria B

Ideal Power Limited 14 Larks Way, Tree Beech Enterprise Park, Gunn, Barnstaple, Devon, England, EX32 7NZ. www.idealpower.co.uk | salessupport@idealpower.co.uk | +44 (0) 1733 309865

Page 3 of 7

Characteristic Curve

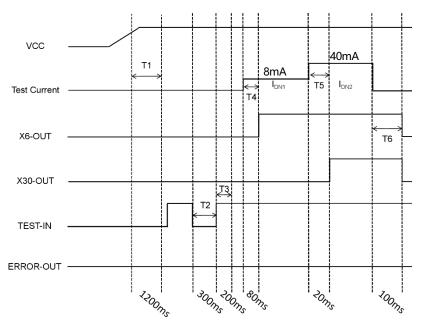
Pin	Mark	Description
1	ERROR -OUT	Error output pin: when the pin is in the high impedance, it indicates that the system is faulty. At this time, the X6-OUT pin and the X30-OUT pin are also in the high impedance. If the system is normal, the pin is low level.
2	TEST- IN	Calibration Test pin: when the pin inputs a low voltage of >40ms and <1.2s in duration, the product performs a zero calibration.
3	X6-OUT	DC action pin. Under the condition that the system is fault-free, the pin is low level when the DC residual current is less than 6mA; otherwise, the pin is high impedance. In addition, when the X30-OUT pin is in a high impedance, the pin is also set to a high impedance. See "Output pin truth Table".
4	X30- OUT	AC action pin. Under the condition that the system is fault-free, the pin is low level when the AC residual current is less than 30mA; otherwise, the pin is high impedance.
5	GND	Product-powered ground.
6	VCC	The product is powered by VCC, which requires a capacitor of 100nF and 1uF in parallel at the input end.
7	PWM- OUT	Duty ratio output pin. Output a square wave signal with 8kHz frequency, and the duty ratio varies with the input current by 3.3% per mA.
8	NC	Not connected.


Output Pin Truth Table

Pin	X6-OUT	X30-OUT	ERROR-OUT	Operating State
	Low level	Low level	Low level	System normal
Pin Output	High impedance	Low level	Low level	I∆NDC > 6mA
State	High impedance	High impedance	Low level	I∆NAC > 30mA
	High impedance	High impedance	High impedance	Error, system fault

Ideal Power Limited

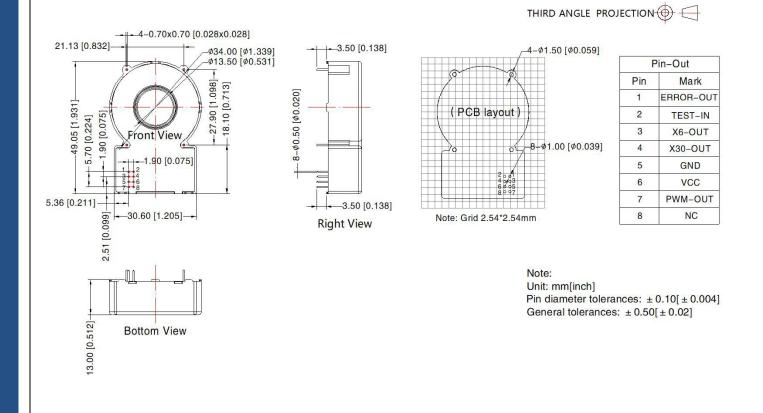
Connection and Description



- 1. The VCC is connected to a 5V power supply.
- 2. DC action pin X6-OUT, AC action pin X30-OUT and duty ratio output pin PWM-OUT are usually connected to a microcontroller or to a power circuit to control back-end circuit breaker action.
- 3. The ERROR output pin ERROR-OUT, DC action pin X6-OUT, and AC action pin X30-OUT need to be connected to pull-up resistors R1, R2, and R3 respectively. 10 kΩ is recommended for pull-up resistors.
- 4. Calibration Test pin TEST-IN is generally controlled by a microcontroller. See "Pin Description" for details.
- 5. Hot plug is unavailable.
- 6. The product should pay attention to level matching and use 5V MCU. If 3.3V MCU is used, the pull-up resistors R1, R2, and R3 need to be connected to a 3.3V power supply.

Timing Characteristics					
Item	Symbol	Min	Тур	Max	Unit.
TEST-IN Signal Low-Level Maintenance Time	T2		300		ms
ERROR-OUT Signal Output Delay Time (IDN3=500mA)	T_ERR		300		

Timing Application Design


Timing application design essentials:

- 1. After the power supply is fully started, the startup and stabilisation time of the module is about 40-1200ms (T1). During this period, it is recommended that the whole system do not operate.
- When performing signal calibration, the external signal sets the TEST-IN pin to a low level, and the recognition time (T2) of the TEST-IN pin low level is about 300ms. After successful identification, a signal calibration test is carried out internally. The duration of the calibration test was approximately 200ms (T3).
- External input test current I_{DN1}, delay about 80ms (T4), X6-OUT pin output high impedance (trip signal);Then the test current is increased to I_{DN2}, and after a delay of about 20ms (T5), the X6-OUT pin and X30-OUT pin output high impedance (trip signal).
- 4. The test current input stops, and after a delay of about 200ms (T6), the X6-OUT pin and X30-OUT pin stop the output trip signal and output low level.
- 5. When the external input test current I_{DN3} (I_{DN3} is greater than the product measurement range), the X6-OUT pin and X30-OUT pin first output the high impedance (trip signal), and after a delay of about 300ms, the ERROR-OUT pin outputs the high impedance.

36TLB6-A1PDM(K) EV Charger Residual Current Transducer

Mechanical Specifications

Notes:

- 1. For additional information on Product Packaging, please refer to www.idealpower.co.uk. Packaging bag number: 58240085.
- 2. All index testing methods in this datasheet are based on company corporate standards.
- 3. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta= $25 \,^{\circ}$ C, humidity<75%RH with nominal input voltage.
- 4. We can provide product customisation service. Please contact our technicians directly for specific information.
- 5. This product is used in electronic equipment. Please follow the operation and instructions of the manual and use it in a standard and safe environment.
- 6. Please do not install the product in a dangerous area; beware of the risk of electric shock during operating, some modules may generate dangerous voltages (such as primary wires, power supply wires);
- 7. This product is a build-in device. After installation, the conductive part must not be touched completely. A protective box or shield can be used.
- 8. It is strictly forbidden to disassemble and assemble the products privately to prevent equipment without failure or malfunction.
- 9. Our products shall be classified according to ISO14001 and related environmental laws and regulations and shall be handled by qualified units.